A Control Strategy for Unified Power Quality Conditioner
نویسنده
چکیده
This paper presents a control strategy for a Unified Power Quality Conditioner. This control strategy is used in three-phase three-wire systems. The UPQC device combines a shunt-active filter together with a series-active filter in a backto-back configuration, to simultaneously compensate the supply voltage and the load current. Previous works presented a control strategy for shunt-active filter that guarantees sinusoidal, balanced and minimized source currents even if under unbalanced and / or distorted system voltages, also known as “Sinusoidal Fryze Currents”. Then, this control strategy was extended to develop a dual control strategy for series-active filter. Now, this paper develops the integration principles of shunt current compensation and series voltages compensation, both based on instantaneous active and non-active powers, directly calculated from a-b-c phase voltages and line currents. Simulation results are presented to validate the proposed UPQC control strategy.
منابع مشابه
Delay Dependent H∞ Based Robust Control Strategy for Unified Power Quality Conditioner in a Microgrid
This paper proposes a novel robust control scheme based on delay-dependent H∞for unified power quality conditioner (UPQC) in a microgrid under the influence of the delay and parameter uncertainties. A new UPQC model considering the effects of the delay and parameter uncertainties is established. Then, the H∞ controller is designed based on the cone complementarity linearization (CCL) algorithm....
متن کاملOptimal Locating and Sizing of Unified Power Quality Conditioner- phase Angle Control for Reactive Power Compensation in Radial Distribution Network with Wind Generation
In this article, a multi-objective planning is demonstrated for reactive power compensation in radial distribution networks with wind generation via unified power quality conditioner (UPQC). UPQC model, based on phase angle control (PAC), is used. In presented method, optimal locating of UPQC-PAC is done by simultaneous minimizing of objective functions such as: grid power loss, percentage of n...
متن کاملImproving the performance of UPQC under unbalanced and distortional load conditions: A new control method
This paper presents a new control method for a three-phase four-wire Unified Power Quality Conditioner (UPQC) to deal with the problems of power quality under distortional and unbalanced load conditions. The proposed control approach is the combination of instantaneous power theory and Synchronous Reference Frame (SRF) theory which is optimized by using a self-tuning filter (STF) and without us...
متن کاملA Novel Flexible Control Strategy for Unified Power Quality Conditioner
This paper presents a novel flexible control strategy for Unified Power Quality Conditioner (UPQC), which achieves more flexibility in compensation of power quality disturbances as compared to the existing methods. The proposed control strategy provides priority-based compensation as well as full and standard-based compensation considering the rating of series and shunt parts of a UPQC. The pri...
متن کاملPower Quality Improvement in Traction Power Supply Networks
AC railway traction loads are usually huge single phase loads. As a result, a significant amount of Negative Sequence Current (NSC) is injected into utility grid. Moreover, harmonics and consumption ofreactive power are further power quality problems that the supply network is encountering. In this paper, acompensation strategy with the aid of Railway Power Conditioner (RPC) is proposed to over...
متن کاملAnalysis of Unified Power Quality Conditioner during Voltage Sag and Swell Conditions
This paper deals with a three-phase unified power quality conditioner (UPQC), with a combination of shunt active power filter and series active power filter is used to eliminate supply current harmonics, compensate reactive power, voltage sag and voltage swell compensation on distribution network. The performance of the active power filter mainly depends on control strategy used to generate ref...
متن کامل